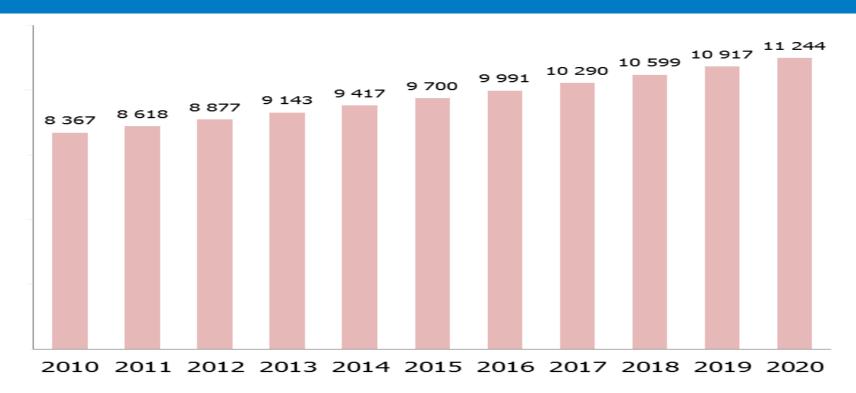


ОСОБЕННОСТИ КОМПОСТИРОВАНИЯ ОРГАНИЧЕСКОЙ ФРАКЦИИ ТКО И НАПРАВЛЕНИЯ ИСПОЛЬЗОВАНИЯ ПОЛУЧАЕМОЙ ПРОДУКЦИИ

Малюхин Дмитрий Михайлович Заместитель генерального директора Полигон ТБО «Новый Свет-ЭКО», к.г.н.

O HAC


O HAC

O HAC

ПРОГНОЗ ОБРАЗОВАНИЯ ТКО В САНКТ-ПЕТЕРБУРГЕ

В 2017 году по данным администраций образовано ТКО: 10 100 289 куб. м, из них:

- в многоквартирном жилом фонде − 7 990 880 куб. м (80,8%)
- в результате хоз. деятельности − 1 760 788 куб. м (18,6%)
- в частном жилищном фонде 49 635 куб. м (< 1%)
- •объем селективно собранных отходов − 1 986 куб. м (< 1%)

Государственной политики в области обращения с отходами

Согласно ст.3 Федерального закона № 89 приоритетны государственной политики в области обращения с отходами в РФ:

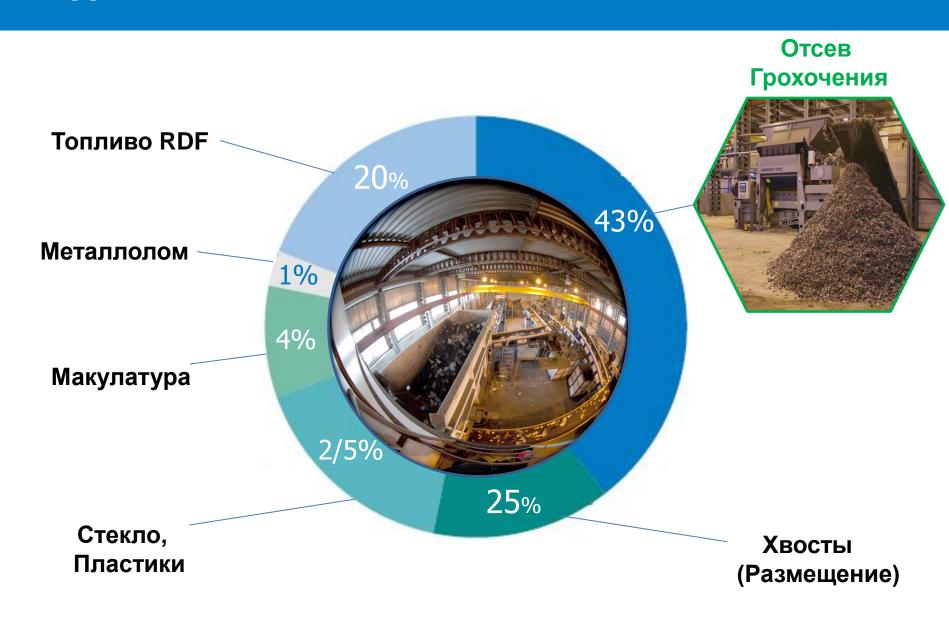
- предотвращение образования отходов
- максимальное использование исходных сырья и материалов
- сокращение образования отходов и снижение класса опасности отходов
- обработка отходов, утилизация отходов, обезвреживание.

Основные тезисы

- 1. Необходимости разделения органической и неорганической частей ТКО;
- 2. Получение **техногрунтов** из органической части ТКО с последующим использование их для эксплуатации и рекультивации Полигонов, других объектов накопленного экологического риска.

СОРТИРОВКА – ОБРАБОТКА/УТИЛИЗАЦИЯ

30%

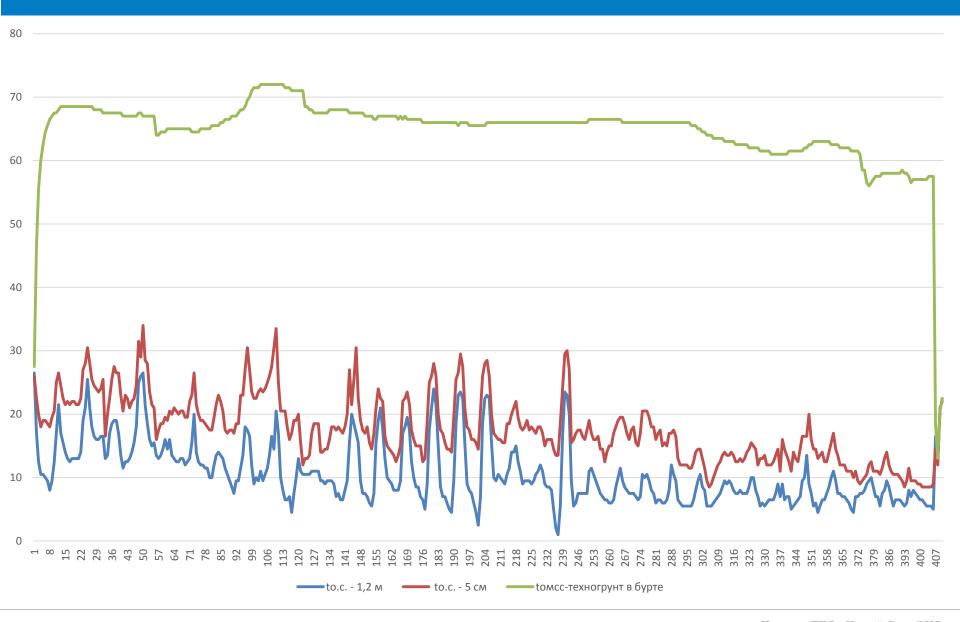


руб. Стоимость ПСД и СМР составляет 200 млн. руб. Итого: 500 млн. руб.

СОРТИРОВКА – ОБРАБОТКА/УТИЛИЗАЦИЯ

ПРОДУКТЫ ПЕРЕРАБОТКИ ТКО

ПОЛЕВОЕ КОМПОСТИРОВАНИЕ



КОНТРОЛЬ СОЗРЕВАНИЯ

КОНТРОЛЬ СОЗРЕВАНИЯ

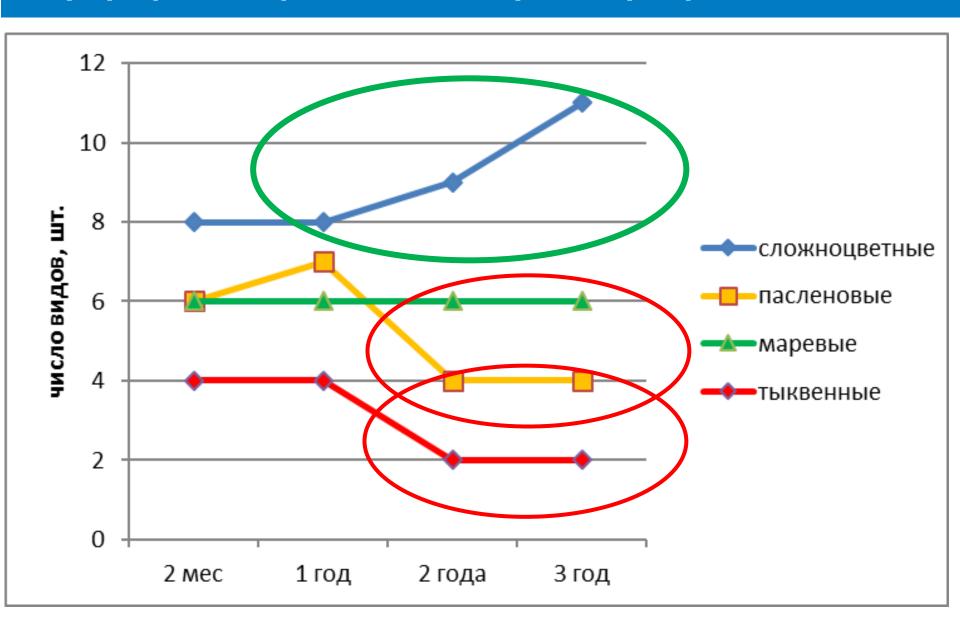
МЕТОДЫ ПЕРЕМЕШИВАНИЯ/АЭРАЦИИ

СРЕДСТВА ЗАЩИТЫ ОРГАНОВ ДЫХАНИЯ

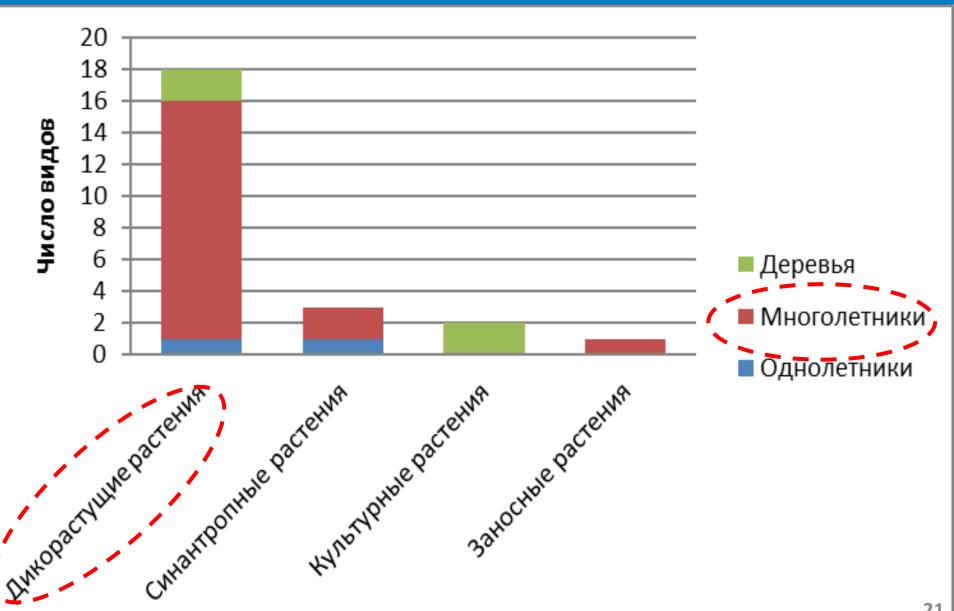
ОТПУГИВАНИЕ ПТИЦ

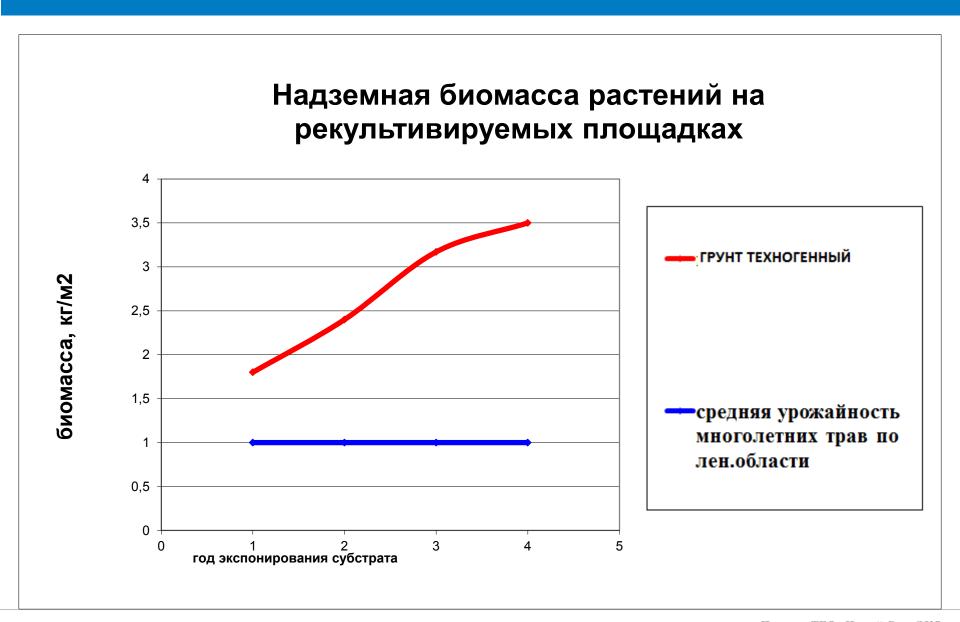
НАНЕСЕНИЕ ТЕХНОГРУНТА НА ОТКОСЫ

НАБЛЮДЕНИЕ ЗА ПРОЦЕССОМ САМОЗАРАСТАНИЯ



НАБЛЮДЕНИЕ ЗА ПРОЦЕССОМ САМОЗАРАСТАНИЯ




Изменение видового разнообразия в семействах, играющих ведущую роль в зарастании исследуемых субстратов

Соотношения жизненных форм основных групп высших сосудистых растений начального этапа самозарастания

измерение надземной биомассы

ОТКОС СФОРМИРОВАННЫЕ ИЗ ГРУНТА ТЕХНОГЕННОГО И ГРУНТА ОТ ЗЕМЛЕРОЙНЫХ РАБОТ

ЗАКЛАДКА ЭКСПЕРИМЕНТАЛЬНЫХ ПЛОЩАДОК

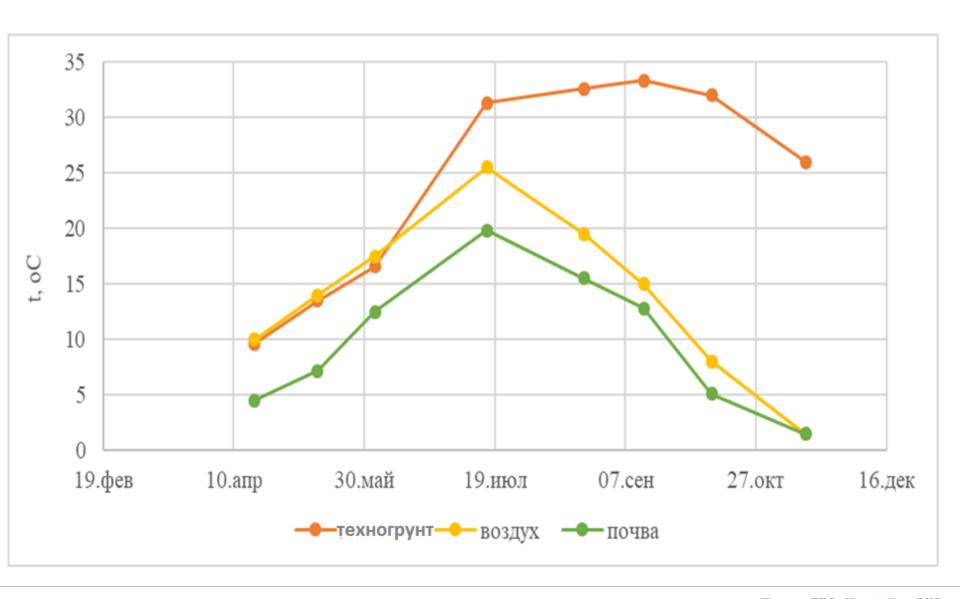
КОНТРОЛЬ ЭКСПЕРИМЕНТАЛЬНЫХ ПЛОЩАДОК

Варианты	Виды растений в	1-й укос, 20.07.2017				2-й укос, 17.08.2017			
	смеси	Масса, кг/м ²	Высота,	Плотность, %	Мощность, балл	Macca, кг/м ²	Высота, см	Плотность, %	Мощность, балл
Смесь 1	Овсяница красная	0,26	16,4	95,6	3	0,45	28,0	95,0	4
	Клевер луговой	0,13	8,2	50,0	1	0,23	14,4-	48,0	2
Смесь 2	Райграс пастбищный	0,90	43,0	88,0	5	1,12	70,2	90,0	5
	Клевер луговой	0,13	8,2	50,0	1	0,20	12,2	47,0	2
Смесь 3	Овсяница красная 30%	0,21	13,1	96,0	2	0,32	20,0	80,0	4
	Клевер луговой 70%	0,13	8,2	96,0	1	0,19	11,8	45,0	2
Смесь 4	Райграс пастбищный	0,25	15,4	92,0	5	0,89	55,8	95,0	4
	Клевер луговой	0,13	8,2	15,4	1	0,23	14,6	49	3
	Овсяница красная	0,26	16,4	96,0	2	0,35	21,8	80,0	2
Смесь 5	Райграс пастбищный	0,43	26,8	96,0	5	1,34	83,8	90,0	4
	Овсяница красная	0,28	17,4	90,0	2	0,43	26,8	46,0	1
Смесь 6	Овсяница красная	0,13	8,2	92,0	2	0,31	19,4	55,0	3
	Клевер луговой	0,13	8,2	50,0	1	0,26	16,0	45,0	1
	Райграс однолетний	1,10	111,2	90,0	5	1,12	69,8	80,0	4
Смесь 7	Райграс однолетний	1,24	104,2	91,0	5	1,22	76,0	85,0	5
	Райграс пастбищный	1,21	104,2	93,0	5	1,23	75,0	85,0	5
Клевер луговой		0,19	11,8	40,0	3	0,19	11,8	80,0	3
Овсяница красная		0,25	15,8	86,0	4	0,52	32,4	90,0	5
Овсяница луговая		0,45	28,4	86,0	5	0,45	28,4	95,0	5
Контроль (самозарастание)		1,81	87,1	40,0	3	1,28	125,2	55,0	4
HCP 0,5		1,1	10,3	8,1	-	1,1	9,6	7,9	-
X cp.		0,45	29,8	76,7	-	0,59	39,7	71,6	-

АГРОХИМИЧЕСКИЕ СВОЙСТВА ГРУНТОВ ТЕХНОГЕННЫХ В НАЧАЛЕ И КОНЦЕ ОПЫТА В СРАВНЕНИИ С ФОНОВОЙ ДЕРНОВО-ПОДЗОЛИСТОЙ ПОЧВОЙ

Суб-страт	Срок отбора	рНсол	Сорг, %	Nобщ, %	C:N	Содержание подвижных питательных элементов, мг/100 г			
						Р	K	N-NH ₄	N-NO ₃
Грунт	Май	6,9	11,5	0,52	20,4	340	390	24	32
техноген- ный	Сентябр ь	7,1	11,0	0,56	19,6	350	275	17	31
Почва	Май	5,5	2,5	0,17	14,7	25	20	25	30
	Сентябр ь	5,6	2,5	0,16	15,6	22	19	21	31

КОНТРОЛЬ ЭКСПЕРИМЕНТАЛЬНЫХ ПЛОЩАДОК



КОНТРОЛЬ ЭКСПЕРИМЕНТАЛЬНЫХ ПЛОЩАДОК

ИЗМЕНЕНИЕ ТЕМПЕРАТУРЫ КОРНЕОБИТАЕМОГО СЛОЯ ТЕХНОГРУНТА, ВОЗДУХА И ПОЧВЫ В ТЕЧЕНИЕ ВЕГЕТАЦИОННОГО СЕЗОНА

БИОХИМИЧЕСКИЙ АНАЛИЗ ЗЕЛЕНОЙ МАССЫ РАСТЕНИЙ									
Показатель	Ед.изм.	Объект							
		Смесь 3	Смесь 6	Смесь 7	Контроль	уровень			
Нитраты	Мг/кг	254,5	312,1	405,0	586,5	500			
Медь	Мг/кг	1,24	1,55	1,85	0,90	30,0			
Свинец	Мг/кг	1,32	0,52	0,75	0,25	5,0			
Кадмий	Мг/кг	0,049	<0,01	<0,01	0,012	0,3			
Никель	Мг/кг	0,167	0,028	0,247	<0,01	3,0			

36,58

6,58

21,38

<0,10

<0,10

<0,001

45,49

6,22

26,89

<0,10

<0,10

<0,001

46,18

10,26

12,12

0,029

<0,10

<0,001

50,0

100

0,5

2,0

0,05

Мг/кг

Мг/кг

Мг/кг

Мг/кг

Мг/кг

Мг/кг

Цинк

Марганец

Железо

Кобальт

Хром

Ртуть

18,38

3,73

60,36

<0,10

<0,10

0,014

ПОЛОЖИТЕЛЬНЫЕ ЭФФЕКТЫ ДЛЯ ОТРАСЛИ

- 1. Минимизация образования фильтрата
- 2. Минимизация образования биогаза
- 3. Минимизация рисков самовозгорания тела полигона
- 4. Уменьшение численности птиц
- 5. Рекультивация во время эксплуатации

ОБЪЕКТЫ РАЗМЕЩЕНИЯ ОТХОДОВ

По данным «Росприроднадзора» в России учтено 23 963 объекта размещения отходов, из них:

- 2 620 полигонов ТБО

- 10 150 полигонов для промышленных отходов

<u>-11 193 несанкционированные свалки</u>

ДО РЕКУЛЬТИВАЦИИ

ЭТАПЫ РЕКУЛЬТИВАЦИИ

• ТЕХНИЧЕСКИЙ

• БИОЛОГИЧЕСКИЙ

ПОСЛЕ РЕКУЛЬТИВАЦИИ

ПРИГЛАШАЕМ В ГОСТИ И К СОТРУДНИЧЕСТВУ!

БЛАГОДАРЮ ЗА ВНИМАНИЕ!

- ② 20 марта 2019 г. 10:00-19:00

КОНФЕРЕНЦИЯ

ПЕРЕДОВОЙ ОПЫТ САНКТ-ПЕТЕРБУРГА
ПО СБОРУ, ТРАНСПОРТИРОВАНИЮ, ОБРАБОТКЕ
И УТИЛИЗАЦИИ ТКО

